Innovative Texture Database Collecting Approach and Feature Extraction Method based on Combination of Gray Tone Difference Matrixes, Local Binary Patterns,and K-means Clustering
نویسنده
چکیده
Texture analysis and classification are some of the problems which have been paid much attention by image processing scientists since late 80s. If texture analysis is done accurately, it can be used in many cases such as object tracking, visual pattern recognition, and face recognition. Since now, so many methods are offered to solve this problem. Against their technical differences, all of them used same popular databases to evaluate their performance such as Brodatz or Outex, which may be made their performance biased on these databases. In this paper, an approach is proposed to collect more efficient databases of texture images. The proposed approach is included two stages. The first one is developing feature representation based on gray tone difference matrixes and local binary patterns features and the next one is consisted an innovative algorithm which is based on K-means clustering to collect images based on evaluated features. In order to evaluate the performance of the proposed approach, a texture database is collected and fisher rate is computed for collected one and well known databases. Also, texture classification is evaluated based on offered feature extraction and the accuracy is compared by some state of the art texture classification methods. KeywordsDatabase Collecting, Texture Classification, Local Binary Patterns, Texture analysis, Gray Tone Difference Matrixes, K-means Clustering
منابع مشابه
Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملContent-Based Video Indexing and Retrieval using Key frames Texture, Edge and Motion Features
In this paper, a novel algorithm for content-based video indexing and retrieval using key-frames texture, edge, and motion features is presented. The algorithm extracts key frames from a video using k-means clustering based method, followed by extraction of texture, edge, and motion features to represent a video with the feature vector. The algorithm is evaluated on a database of three hundred ...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کامل